Sistem Rekomendasi Produk Makeup Berbasis Content-Based Filtering dengan TF-IDF dan Cosine Similarity
DOI:
https://doi.org/10.70404/ketik.v2i06.311Keywords:
Recommendation system, Makeup, Content-based filtering, TF-IDF, Cosine similarityAbstract
The growing cosmetics industry offers a wide range of makeup products; however, consumers often face difficulties in selecting alternative products that align with their preferences. This study aims to develop a content-based filtering recommendation system to assist users in finding relevant products when their primary product is unavailable. The method includes data collection from Kaggle using the Luxxify Makeup dataset, data exploration, preprocessing, feature extraction using TF-IDF, and product similarity calculation using cosine similarity. The recommended products are those with the highest similarity based on category and product description. Evaluation was carried out using the Mean Average Precision (MAP) metric to assess the relevance of recommendations. The results show that the system successfully recommends five alternative products with very high accuracy (MAP = 1.00). This system contributes to providing a personalized and efficient product search solution and can be applied to e-commerce platforms or digital beauty services.
Downloads
References
M. F. Milenao, “Industri Kosmetik Lokal Kian Meroket, Pertumbuhan Tembus Angka 48 Persen,” goodnewsfromindonesia.id. Accessed: Jul. 22, 2025. [Online]. Available: https://www.goodnewsfromindonesia.id/2024/08/22/industri-kosmetik-lokal-kian-meroket-pertumbuhan-tembus-angka-48-persen
Warta Ekonomi, “Tahan Banting! Industri Kecantikan Indonesia Makin Potensial,” wartaekonomi.co.id. Accessed: Jul. 22, 2025. [Online]. Available: https://wartaekonomi.co.id/read554079/tahan-banting-industri-kecantikan-indonesia-makin-potensial
F. B. A. Larasati and H. Februariyanti, “Sistem Rekomendasi Product Emina Cosmetics Dengan Menggunakan Metode Content - Based Filtering,” J. Manaj. Inform. dan Sist. Inf., vol. 4, no. 1, pp. 45–54, 2021, doi: 10.36595/misi.v4i1.250.
A. Sulami, V. Atina, and N. Nurmalitasari, “Penerapan Metode Content Based Filtering dalam Sistem Rekomendasi Pemilihan Produk Skincare,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 9, no. 2, pp. 172–181, 2024, doi: 10.30998/string.v9i2.24066.
S. Seelam, “Machine Learning Fundamentals: Cosine Similarity and Cosine Distance,” medium.com. Accessed: Jul. 22, 2025. [Online]. Available: https://medium.com/geekculture/cosine-similarity-and-cosine-distance-48eed889a5c4
W. G. Suka Parwita and E. Winarko, “Hybrid Recommendation System Memanfaatkan Penggalian Frequent Itemset dan Perbandingan Keyword,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 9, no. 2, pp. 167–176, 2015, doi: 10.22146/ijccs.7545.
H. H. Arfisko and A. T. Wibowo, “Sistem Rekomendasi Film Menggunakan Metode Hybrid Collaborative Filtering dan Content-Based Filtering,” e-Proceeding Eng., vol. 9, no. 3, pp. 2149–2159, 2022.
Supiyanto and Sriyono, “Metode Cosine Similarity Untuk Mendeteksi Kemiripan Pada Dokumen Teks,” SAINS J. MIPA dan Pengajarannya, vol. 1, no. 1, pp. 1–7, 2023, [Online]. Available: https://ejournal.uncen.ac.id/index.php/SAINS
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 KETIK : Jurnal Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.